Groups generated by two bicyclic units in integral group rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involutions and Free Pairs of Bicyclic Units in Integral Group Rings of Non-nilpotent Groups

If ∗ : G → G is an involution on the finite group G, then ∗ extends to an involution on the integral group ring Z[G]. In this paper, we consider whether bicyclic units u ∈ Z[G] exist with the property that the group 〈u, u∗〉, generated by u and u∗, is free on the two generators. If this occurs, we say that (u, u∗) is a free bicyclic pair. It turns out that the existence of u depends strongly upo...

متن کامل

Torsion units in integral group rings of Janko simple groups

Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of integral group rings of Janko simple groups. As a consequence, for the Janko groups J1, J2 and J3 we confirm Kimmerle’s conjecture on prime graphs.

متن کامل

Torsion Units in Integral Group Rings of Conway Simple Groups

Using the Luthar–Passi method, we investigate the possible orders and partial augmentations of torsion units of the normalized unit group of integral group rings of Conway simple groups Co1, Co2 and Co3. Let U(ZG) be the unit group of the integral group ring ZG of a finite group G, and V (ZG) be its normalized unit group

متن کامل

Central Units of Integral Group Rings of Nilpotent Groups

In this paper a finite set of generators is given for a subgroup of finite index in the group of central units of the integral group ring of a finitely generated nilpotent group. In this paper we construct explicitly a finite set of generators for a subgroup of finite index in the centre Z(U(ZG)) of the unit group U(ZG) of the integral group ring ZG of a finitely generated nilpotent group G. Ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Group Theory

سال: 2002

ISSN: 1433-5883,1435-4446

DOI: 10.1515/jgth.2002.018